Program Listing for File sri.hpp
↰ Return to documentation for file (include/integrators/sde/sri.hpp
)
#pragma once
#include <sde/sde_base.hpp>
#include <core/state_creator.hpp>
#include <cmath>
#include <vector>
#include <algorithm>
namespace diffeq {
template<typename T>
struct SRITableau {
// Drift coefficients
std::vector<std::vector<T>> A0, A1;
std::vector<T> c0;
std::vector<T> alpha;
// Diffusion coefficients
std::vector<std::vector<T>> B0, B1;
std::vector<T> c1;
std::vector<T> beta1, beta2, beta3, beta4;
int stages;
T order;
};
template<system_state StateType>
class SRIIntegrator : public sde::AbstractSDEIntegrator<StateType> {
public:
using base_type = sde::AbstractSDEIntegrator<StateType>;
using state_type = typename base_type::state_type;
using time_type = typename base_type::time_type;
using value_type = typename base_type::value_type;
using tableau_type = SRITableau<value_type>;
explicit SRIIntegrator(std::shared_ptr<typename base_type::sde_problem_type> problem,
std::shared_ptr<typename base_type::wiener_process_type> wiener = nullptr,
tableau_type tableau = SRIIntegrator::create_sriw1_tableau())
: base_type(problem, wiener)
, tableau_(std::move(tableau)) {}
void step(state_type& state, time_type dt) override {
const int stages = tableau_.stages;
// Create temporary states
std::vector<state_type> H0(stages), H1(stages);
for (int i = 0; i < stages; ++i) {
H0[i] = StateCreator<state_type>::create(state);
H1[i] = StateCreator<state_type>::create(state);
}
state_type dW = StateCreator<state_type>::create(state);
state_type dZ = StateCreator<state_type>::create(state);
state_type ftmp = StateCreator<state_type>::create(state);
state_type gtmp = StateCreator<state_type>::create(state);
// Generate Wiener increments
this->wiener_->generate_increment(dW, dt);
this->wiener_->generate_increment(dZ, dt);
// Compute multiple stochastic integrals
value_type sqrt3 = std::sqrt(static_cast<value_type>(3));
value_type sqrt_dt = std::sqrt(static_cast<value_type>(dt));
// chi1 = (1/2) * ((dW)^2 - dt) / sqrt(dt) for I_(1,1)/sqrt(h)
// chi2 = (1/2) * (dW + dZ/sqrt(3)) for I_(1,0)/h
// chi3 = (1/6) * ((dW)^3 - 3*dW*dt) / dt for I_(1,1,1)/h
state_type chi1 = StateCreator<state_type>::create(state);
state_type chi2 = StateCreator<state_type>::create(state);
state_type chi3 = StateCreator<state_type>::create(state);
for (size_t j = 0; j < state.size(); ++j) {
auto dW_it = dW.begin();
auto dZ_it = dZ.begin();
auto chi1_it = chi1.begin();
auto chi2_it = chi2.begin();
auto chi3_it = chi3.begin();
value_type dW_val = dW_it[j];
value_type dW_squared = dW_val * dW_val;
chi1_it[j] = static_cast<value_type>(0.5) * (dW_squared - dt) / sqrt_dt;
chi2_it[j] = static_cast<value_type>(0.5) * (dW_val + dZ_it[j] / sqrt3);
chi3_it[j] = static_cast<value_type>(1.0/6.0) * (dW_val * dW_squared - 3 * dW_val * dt) / dt;
}
// Initialize H0[0] = H1[0] = current state
for (size_t j = 0; j < state.size(); ++j) {
auto state_it = state.begin();
auto H0_0_it = H0[0].begin();
auto H1_0_it = H1[0].begin();
H0_0_it[j] = state_it[j];
H1_0_it[j] = state_it[j];
}
// Compute stages
for (int i = 1; i < stages; ++i) {
state_type A0temp = StateCreator<state_type>::create(state);
state_type A1temp = StateCreator<state_type>::create(state);
state_type B0temp = StateCreator<state_type>::create(state);
state_type B1temp = StateCreator<state_type>::create(state);
for (int j = 0; j < i; ++j) {
this->problem_->drift(this->current_time_ + tableau_.c0[j] * dt, H0[j], ftmp);
this->problem_->diffusion(this->current_time_ + tableau_.c1[j] * dt, H1[j], gtmp);
for (size_t k = 0; k < state.size(); ++k) {
auto A0temp_it = A0temp.begin();
auto A1temp_it = A1temp.begin();
auto B0temp_it = B0temp.begin();
auto B1temp_it = B1temp.begin();
auto ftmp_it = ftmp.begin();
auto gtmp_it = gtmp.begin();
auto chi1_it = chi1.begin();
auto chi2_it = chi2.begin();
A0temp_it[k] += tableau_.A0[j][i] * ftmp_it[k];
A1temp_it[k] += tableau_.A1[j][i] * ftmp_it[k];
B0temp_it[k] += tableau_.B0[j][i] * gtmp_it[k];
B1temp_it[k] += tableau_.B1[j][i] * gtmp_it[k] * chi1_it[k];
}
}
// Update H0[i] and H1[i]
for (size_t k = 0; k < state.size(); ++k) {
auto state_it = state.begin();
auto H0_i_it = H0[i].begin();
auto H1_i_it = H1[i].begin();
auto A0temp_it = A0temp.begin();
auto A1temp_it = A1temp.begin();
auto B0temp_it = B0temp.begin();
auto B1temp_it = B1temp.begin();
auto chi2_it = chi2.begin();
auto dW_it = dW.begin();
H0_i_it[k] = state_it[k] + dt * A0temp_it[k] + B0temp_it[k] * dW_it[k];
H1_i_it[k] = state_it[k] + dt * A1temp_it[k] + B0temp_it[k] * sqrt_dt + B1temp_it[k] + chi2_it[k] * B0temp_it[k];
}
}
// Compute final update
state_type drift_sum = StateCreator<state_type>::create(state);
state_type E1 = StateCreator<state_type>::create(state);
state_type E2 = StateCreator<state_type>::create(state);
state_type E3 = StateCreator<state_type>::create(state);
std::fill(drift_sum.begin(), drift_sum.end(), value_type(0));
std::fill(E1.begin(), E1.end(), value_type(0));
std::fill(E2.begin(), E2.end(), value_type(0));
std::fill(E3.begin(), E3.end(), value_type(0));
for (int i = 0; i < stages; ++i) {
this->problem_->drift(this->current_time_ + tableau_.c0[i] * dt, H0[i], ftmp);
this->problem_->diffusion(this->current_time_ + tableau_.c1[i] * dt, H1[i], gtmp);
for (size_t k = 0; k < state.size(); ++k) {
auto drift_sum_it = drift_sum.begin();
auto E1_it = E1.begin();
auto E2_it = E2.begin();
auto E3_it = E3.begin();
auto ftmp_it = ftmp.begin();
auto gtmp_it = gtmp.begin();
auto dW_it = dW.begin();
auto chi1_it = chi1.begin();
auto chi2_it = chi2.begin();
auto chi3_it = chi3.begin();
drift_sum_it[k] += tableau_.alpha[i] * ftmp_it[k];
E1_it[k] += tableau_.beta1[i] * gtmp_it[k] * dW_it[k];
E2_it[k] += tableau_.beta2[i] * gtmp_it[k] * chi1_it[k];
E2_it[k] += tableau_.beta3[i] * gtmp_it[k] * chi2_it[k];
E3_it[k] += tableau_.beta4[i] * gtmp_it[k] * chi3_it[k];
}
}
// Final state update
for (size_t k = 0; k < state.size(); ++k) {
auto state_it = state.begin();
auto drift_sum_it = drift_sum.begin();
auto E1_it = E1.begin();
auto E2_it = E2.begin();
auto E3_it = E3.begin();
state_it[k] += dt * drift_sum_it[k] + E1_it[k] + E2_it[k] + E3_it[k];
}
this->advance_time(dt);
}
std::string name() const override {
return "SRI (Strong Order 1.5 for General Itô SDEs)";
}
void set_tableau(const tableau_type& tableau) {
tableau_ = tableau;
}
private:
tableau_type tableau_;
// Default SRIW1 tableau
static tableau_type create_sriw1_tableau() {
tableau_type tableau;
tableau.stages = 2;
tableau.order = static_cast<value_type>(1.5);
// Basic SRIW1 coefficients (simplified)
tableau.A0 = {{0, 0}, {1, 0}};
tableau.A1 = {{0, 0}, {1, 0}};
tableau.c0 = {0, 1};
tableau.alpha = {static_cast<value_type>(0.5), static_cast<value_type>(0.5)};
tableau.B0 = {{0, 0}, {1, 0}};
tableau.B1 = {{0, 0}, {1, 0}};
tableau.c1 = {0, 1};
tableau.beta1 = {static_cast<value_type>(0.5), static_cast<value_type>(0.5)};
tableau.beta2 = {0, 1};
tableau.beta3 = {0, static_cast<value_type>(0.5)};
tableau.beta4 = {0, static_cast<value_type>(1.0/6.0)};
return tableau;
}
};
} // namespace diffeq