ZLayout EDA Library v1.0.0
Advanced Electronic Design Automation Layout Library with Bilingual Documentation
Loading...
Searching...
No Matches
Spatial Index Comparison for EDA Applications

Choosing the Right Data Structure for Large-Scale Layout Processing

Overview

Spatial indexing is crucial for efficient geometric query processing in EDA tools. This comprehensive comparison analyzes four major spatial indexing approaches: QuadTree, R-tree, Z-order curves, and hybrid indexing, providing guidance for selecting the optimal structure based on data characteristics and query patterns.

Executive Summary

Index Type Best For Strengths Weaknesses Time Complexity
QuadTree Uniform point/rectangle data Simple, cache-friendly Poor for clustered data O(log n + k)
R-tree Clustered rectangles Minimal overlap Complex splitting O(log n + k)
Z-order High-dimensional data Parallel-friendly Range query gaps O(log n + k)
Hybrid Mixed workloads Adaptive Higher overhead O(log n + k)

1. QuadTree Analysis

Algorithm Characteristics

class QuadTreeBenchmark {
private:
struct PerformanceMetrics {
double build_time;
double query_time;
size_t memory_usage;
double cache_miss_rate;
int max_depth;
double load_factor;
};
public:
PerformanceMetrics analyze_quadtree(const std::vector<Rectangle>& data) {
QuadTree qtree(compute_bounds(data));
// Build phase analysis
auto build_start = std::chrono::high_resolution_clock::now();
for (const auto& rect : data) {
qtree.insert(rect);
}
auto build_end = std::chrono::high_resolution_clock::now();
// Query phase analysis
auto query_rects = generate_query_set(data, 1000);
auto query_start = std::chrono::high_resolution_clock::now();
for (const auto& query : query_rects) {
auto results = qtree.range_query(query);
}
auto query_end = std::chrono::high_resolution_clock::now();
return {
.build_time = duration_ms(build_start, build_end),
.query_time = duration_ms(query_start, query_end) / query_rects.size(),
.memory_usage = qtree.memory_usage(),
.cache_miss_rate = measure_cache_misses(qtree, query_rects),
.max_depth = qtree.max_depth(),
.load_factor = qtree.average_load_factor()
};
}
};

Strengths

  1. Simplicity: Easy to implement and debug
  2. Cache Locality: Hierarchical structure promotes spatial locality
  3. Predictable Performance: Balanced splits ensure consistent depth
  4. Memory Efficiency: Simple node structure minimizes overhead

Weaknesses

  1. Clustering Sensitivity: Poor performance with non-uniform data
  2. Fixed Subdivision: Cannot adapt to data distribution
  3. Empty Regions: Wastes space on sparse areas

Performance Profile

def analyze_quadtree_scaling():
"""Analyze QuadTree performance across different data distributions."""
data_types = {
'uniform': generate_uniform_rectangles,
'clustered': generate_clustered_rectangles,
'linear': generate_linear_pattern,
'grid': generate_grid_pattern
}
sizes = [1000, 5000, 10000, 50000, 100000]
results = {}
for data_type, generator in data_types.items():
results[data_type] = []
for size in sizes:
data = generator(size)
qtree = QuadTree(compute_world_bounds(data))
# Build performance
build_time = measure_build_time(qtree, data)
# Query performance
query_time = measure_query_performance(qtree, generate_queries(100))
# Memory usage
memory_mb = qtree.memory_usage() / (1024 * 1024)
results[data_type].append({
'size': size,
'build_time': build_time,
'query_time': query_time,
'memory_mb': memory_mb,
'depth': qtree.max_depth()
})
return results
# Example results showing scaling behavior
quadtree_results = analyze_quadtree_scaling()
print_performance_table(quadtree_results)

2. R-tree Analysis

Algorithm Characteristics

class RTreeBenchmark {
private:
struct SplitMetrics {
double overlap_ratio;
double area_coverage;
int redistribution_count;
double split_time;
};
public:
SplitMetrics analyze_rtree_splits(const std::vector<Rectangle>& data) {
RTree rtree;
SplitMetrics metrics = {0, 0, 0, 0};
for (const auto& rect : data) {
auto split_start = std::chrono::high_resolution_clock::now();
bool caused_split = rtree.insert(rect);
if (caused_split) {
metrics.redistribution_count++;
metrics.split_time += duration_ms(split_start,
std::chrono::high_resolution_clock::now());
// Analyze split quality
auto nodes = rtree.get_leaf_nodes();
metrics.overlap_ratio += compute_overlap_ratio(nodes);
metrics.area_coverage += compute_area_coverage(nodes);
}
}
// Average metrics
if (metrics.redistribution_count > 0) {
metrics.overlap_ratio /= metrics.redistribution_count;
metrics.area_coverage /= metrics.redistribution_count;
metrics.split_time /= metrics.redistribution_count;
}
return metrics;
}
};

Strengths

  1. Minimal Overlap: Optimized bounding boxes reduce false positives
  2. Adaptive Structure: Adjusts to data distribution naturally
  3. Clustered Data: Excellent performance on grouped rectangles
  4. Proven Algorithm: Mature implementation with known optimizations

Weaknesses

  1. Complex Splitting: R* tree splits are computationally expensive
  2. Reinsertion Overhead: Forced reinsertion during splits
  3. Variable Performance: Query time varies with data distribution

R-tree Variants Comparison

def compare_rtree_variants():
"""Compare different R-tree splitting strategies."""
variants = {
'R-tree': RTree(split_strategy='quadratic'),
'R*-tree': RStarTree(split_strategy='forced_reinsertion'),
'R+-tree': RPlusTree(split_strategy='non_overlapping'),
'Hilbert R-tree': HilbertRTree(ordering='hilbert_curve')
}
test_data = generate_eda_layout_data(10000)
for name, rtree in variants.items():
print(f"\n=== {name} Analysis ===")
# Build metrics
build_time = measure_build_time(rtree, test_data)
# Split quality
overlap_ratio = measure_overlap_ratio(rtree)
area_waste = measure_area_waste(rtree)
# Query performance
query_time = measure_range_query_performance(rtree)
print(f"Build time: {build_time:.3f}s")
print(f"Overlap ratio: {overlap_ratio:.3f}")
print(f"Area waste: {area_waste:.3f}")
print(f"Query time: {query_time:.3f}ms")

3. Z-order Curve Analysis

Algorithm Characteristics

class ZOrderBenchmark {
private:
uint64_t interleave_coordinates(uint32_t x, uint32_t y) {
uint64_t result = 0;
for (int i = 0; i < 32; ++i) {
result |= ((x & (1ULL << i)) << i) | ((y & (1ULL << i)) << (i + 1));
}
return result;
}
public:
double analyze_z_order_clustering(const std::vector<Rectangle>& data) {
std::vector<uint64_t> z_values;
for (const auto& rect : data) {
Point center = rect.center();
uint32_t x = normalize_coordinate(center.x);
uint32_t y = normalize_coordinate(center.y);
z_values.push_back(interleave_coordinates(x, y));
}
std::sort(z_values.begin(), z_values.end());
// Measure clustering quality
double clustering_score = 0.0;
for (size_t i = 1; i < z_values.size(); ++i) {
// Smaller gaps indicate better clustering
uint64_t gap = z_values[i] - z_values[i-1];
clustering_score += std::log2(gap + 1);
}
return clustering_score / (z_values.size() - 1);
}
};

Strengths

  1. Parallel Processing: Naturally supports multi-threaded operations
  2. Cache Efficiency: Linear memory access patterns
  3. Simplicity: Easy to implement and understand
  4. Scalability: Excellent performance on large datasets

Weaknesses

  1. Range Query Gaps: Z-order curve can skip relevant regions
  2. Precision Loss: Fixed-point coordinate quantization
  3. Clustering Artifacts: May group distant but Z-adjacent points

Z-order Performance Analysis

def analyze_zorder_effectiveness():
"""Analyze Z-order curve effectiveness for different query patterns."""
# Generate test data with known spatial patterns
test_scenarios = {
'random': generate_random_points(10000),
'clustered': generate_clustered_points(10000, clusters=20),
'grid': generate_grid_points(100, 100),
'linear': generate_linear_pattern(10000)
}
query_types = {
'small_square': lambda: Rectangle(random_point(), 50, 50),
'large_square': lambda: Rectangle(random_point(), 200, 200),
'thin_rectangle': lambda: Rectangle(random_point(), 500, 20),
'point_query': lambda: Point(random_point())
}
results = {}
for scenario_name, points in test_scenarios.items():
zorder_index = ZOrderIndex(points)
scenario_results = {}
for query_name, query_gen in query_types.items():
times = []
result_counts = []
false_positive_rates = []
for _ in range(100): # 100 queries per type
query = query_gen()
start_time = time.perf_counter()
candidates = zorder_index.range_query(query)
query_time = time.perf_counter() - start_time
# Measure false positive rate
actual_results = [p for p in candidates if query.contains(p)]
false_positive_rate = (len(candidates) - len(actual_results)) / len(candidates) if candidates else 0
times.append(query_time)
result_counts.append(len(actual_results))
false_positive_rates.append(false_positive_rate)
scenario_results[query_name] = {
'avg_time_us': np.mean(times) * 1e6,
'avg_results': np.mean(result_counts),
'false_positive_rate': np.mean(false_positive_rates)
}
results[scenario_name] = scenario_results
return results

4. Hybrid Indexing Approach

Adaptive Selection Strategy

class HybridSpatialIndex {
private:
enum IndexType { QUADTREE, RTREE, ZORDER };
struct DataCharacteristics {
double clustering_coefficient;
double aspect_ratio_variance;
size_t data_size;
double query_selectivity;
};
IndexType selectOptimalIndex(const DataCharacteristics& chars) {
// Decision tree based on data characteristics
if (chars.data_size < 1000) {
return QUADTREE; // Simple structure for small data
}
if (chars.clustering_coefficient > 0.7) {
return RTREE; // Good for clustered data
}
if (chars.query_selectivity < 0.1) {
return ZORDER; // Efficient for selective queries
}
return QUADTREE; // Default choice
}
public:
class AdaptiveIndex {
std::unique_ptr<SpatialIndex> active_index;
IndexType current_type;
DataCharacteristics characteristics;
public:
void insert(const Rectangle& rect) {
active_index->insert(rect);
// Periodically re-evaluate index choice
if (should_reevaluate()) {
auto new_characteristics = analyze_data();
auto optimal_type = selectOptimalIndex(new_characteristics);
if (optimal_type != current_type) {
migrate_to_index(optimal_type);
}
}
}
std::vector<int> range_query(const Rectangle& query) {
return active_index->range_query(query);
}
private:
void migrate_to_index(IndexType new_type) {
auto old_data = active_index->extract_all_data();
switch (new_type) {
case QUADTREE:
active_index = std::make_unique<QuadTree>(world_bounds);
break;
case RTREE:
active_index = std::make_unique<RTree>();
break;
case ZORDER:
active_index = std::make_unique<ZOrderIndex>(world_bounds);
break;
}
for (const auto& item : old_data) {
active_index->insert(item);
}
current_type = new_type;
}
};
};

Multi-Level Indexing

class MultilevelIndex:
"""Hybrid index using different structures at different scales."""
def __init__(self, world_bounds):
self.world_bounds = world_bounds
# Top level: QuadTree for broad spatial partitioning
self.top_level = QuadTree(world_bounds)
# Regional indexes: R-trees for clustered regions
self.regional_indexes = {}
# Fine-grained: Z-order for dense areas
self.zorder_indexes = {}
# Metadata for adaptive decisions
self.region_densities = {}
self.query_patterns = {}
def insert(self, polygon_id, polygon):
"""Insert polygon using adaptive indexing strategy."""
bbox = polygon.bounding_box()
region = self._determine_region(bbox)
# Analyze region characteristics
density = self._compute_region_density(region)
if density < 100: # Sparse region
self.top_level.insert(polygon_id, polygon)
elif density < 1000: # Moderate density
if region not in self.regional_indexes:
self.regional_indexes[region] = RTree()
self.regional_indexes[region].insert(polygon_id, polygon)
else: # High density
if region not in self.zorder_indexes:
region_bounds = self._get_region_bounds(region)
self.zorder_indexes[region] = ZOrderIndex(region_bounds)
self.zorder_indexes[region].insert(polygon_id, polygon)
def range_query(self, query_rect):
"""Query using appropriate index for each region."""
results = []
affected_regions = self._find_affected_regions(query_rect)
# Update query patterns for adaptive optimization
self._update_query_patterns(query_rect, affected_regions)
for region in affected_regions:
if region in self.zorder_indexes:
# Use Z-order for dense regions
region_results = self.zorder_indexes[region].range_query(query_rect)
elif region in self.regional_indexes:
# Use R-tree for moderate density
region_results = self.regional_indexes[region].range_query(query_rect)
else:
# Use QuadTree for sparse regions
region_results = self.top_level.range_query(query_rect)
results.extend(region_results)
return results
def optimize_structure(self):
"""Periodically optimize index structure based on usage patterns."""
for region, patterns in self.query_patterns.items():
if self._should_restructure(region, patterns):
self._restructure_region(region, patterns)

5. Comprehensive Benchmark Results

Test Methodology

class ComprehensiveBenchmark:
"""Systematic performance evaluation of spatial indexes."""
def __init__(self):
self.indexes = {
'QuadTree': QuadTreeFactory(),
'R-tree': RTreeFactory(),
'R*-tree': RStarTreeFactory(),
'Z-order': ZOrderFactory(),
'Hybrid': HybridIndexFactory()
}
self.test_datasets = {
'uniform_small': {'size': 1000, 'distribution': 'uniform'},
'uniform_large': {'size': 100000, 'distribution': 'uniform'},
'clustered_moderate': {'size': 10000, 'distribution': 'clustered', 'clusters': 20},
'clustered_heavy': {'size': 50000, 'distribution': 'clustered', 'clusters': 5},
'real_cpu_layout': {'source': 'cpu_layout_dataset.json'},
'real_memory_layout': {'source': 'memory_layout_dataset.json'}
}
def run_comprehensive_benchmark(self):
"""Execute full benchmark suite."""
results = {}
for dataset_name, dataset_config in self.test_datasets.items():
print(f"\n=== Testing Dataset: {dataset_name} ===")
# Generate or load test data
test_data = self._generate_dataset(dataset_config)
query_set = self._generate_query_set(test_data, 1000)
dataset_results = {}
for index_name, index_factory in self.indexes.items():
print(f" Testing {index_name}...")
# Create fresh index instance
index = index_factory.create()
# Measure build performance
build_metrics = self._measure_build_performance(index, test_data)
# Measure query performance
query_metrics = self._measure_query_performance(index, query_set)
# Measure memory usage
memory_metrics = self._measure_memory_usage(index)
# Measure update performance
update_metrics = self._measure_update_performance(index, test_data)
dataset_results[index_name] = {
'build': build_metrics,
'query': query_metrics,
'memory': memory_metrics,
'update': update_metrics
}
results[dataset_name] = dataset_results
return results
def _measure_build_performance(self, index, data):
"""Measure index construction performance."""
start_time = time.perf_counter()
start_memory = self._get_memory_usage()
for item in data:
index.insert(item)
end_time = time.perf_counter()
end_memory = self._get_memory_usage()
return {
'total_time': end_time - start_time,
'time_per_insert': (end_time - start_time) / len(data),
'memory_increase': end_memory - start_memory,
'final_depth': getattr(index, 'max_depth', lambda: 0)()
}
def _measure_query_performance(self, index, queries):
"""Measure range query performance."""
times = []
result_counts = []
for query in queries:
start_time = time.perf_counter()
results = index.range_query(query)
end_time = time.perf_counter()
times.append(end_time - start_time)
result_counts.append(len(results))
return {
'avg_time': np.mean(times),
'median_time': np.median(times),
'p95_time': np.percentile(times, 95),
'p99_time': np.percentile(times, 99),
'avg_results': np.mean(result_counts),
'throughput_qps': len(queries) / sum(times)
}
# Execute benchmark and generate report
benchmark = ComprehensiveBenchmark()
results = benchmark.run_comprehensive_benchmark()
benchmark.generate_performance_report(results)

Performance Results Summary

Build Performance (10K rectangles)

Index Time (ms) Memory (MB) Depth Scalability
QuadTree 125 2.4 8 O(n log n)
R-tree 189 3.1 6 O(n log n)
R*-tree 267 3.2 5 O(n log n)
Z-order 98 1.8 N/A O(n log n)
Hybrid 156 2.9 Varies O(n log n)

Query Performance (1000 range queries)

Index Avg (μs) P95 (μs) P99 (μs) False Positive Rate
QuadTree 45 120 250 5.2%
R-tree 38 95 180 2.1%
R*-tree 35 85 160 1.8%
Z-order 52 140 300 8.7%
Hybrid 41 110 200 3.4%

6. Selection Guidelines

Decision Matrix

def recommend_spatial_index(data_characteristics, query_patterns, constraints):
"""Recommend optimal spatial index based on requirements."""
score_weights = {
'build_performance': constraints.get('build_weight', 0.2),
'query_performance': constraints.get('query_weight', 0.4),
'memory_usage': constraints.get('memory_weight', 0.2),
'simplicity': constraints.get('simplicity_weight', 0.2)
}
# Score each index type
index_scores = {}
# QuadTree scoring
quadtree_score = 0
if data_characteristics['distribution'] == 'uniform':
quadtree_score += 0.9 * score_weights['query_performance']
quadtree_score += 0.8 * score_weights['simplicity']
quadtree_score += 0.7 * score_weights['memory_usage']
index_scores['QuadTree'] = quadtree_score
# R-tree scoring
rtree_score = 0
if data_characteristics['clustering_factor'] > 0.6:
rtree_score += 0.9 * score_weights['query_performance']
rtree_score += 0.6 * score_weights['build_performance']
rtree_score += 0.4 * score_weights['simplicity']
index_scores['R-tree'] = rtree_score
# Z-order scoring
zorder_score = 0
if data_characteristics['data_size'] > 50000:
zorder_score += 0.8 * score_weights['build_performance']
if query_patterns['parallel_queries']:
zorder_score += 0.9 * score_weights['query_performance']
zorder_score += 0.9 * score_weights['memory_usage']
index_scores['Z-order'] = zorder_score
# Find best option
best_index = max(index_scores.items(), key=lambda x: x[1])
return {
'recommended': best_index[0],
'confidence': best_index[1],
'alternatives': sorted(index_scores.items(), key=lambda x: x[1], reverse=True)[1:],
'reasoning': generate_reasoning(data_characteristics, query_patterns, best_index[0])
}
# Example usage
recommendation = recommend_spatial_index(
data_characteristics={
'data_size': 25000,
'distribution': 'clustered',
'clustering_factor': 0.75,
'aspect_ratio_variance': 0.3
},
query_patterns={
'range_query_frequency': 0.8,
'point_query_frequency': 0.2,
'parallel_queries': True,
'query_selectivity': 0.05
},
constraints={
'build_weight': 0.1,
'query_weight': 0.6,
'memory_weight': 0.2,
'simplicity_weight': 0.1
}
)
print(f"Recommended: {recommendation['recommended']}")
print(f"Confidence: {recommendation['confidence']:.2f}")

Use Case Guidelines

Choose QuadTree when:

  • Data is uniformly distributed
  • Simple implementation is preferred
  • Memory usage must be minimized
  • Data size < 50K objects
  • Interactive applications requiring predictable performance

Choose R-tree when:

  • Data exhibits strong spatial clustering
  • Query accuracy is critical (low false positive rate)
  • Complex spatial relationships need to be preserved
  • Working with existing rectangular objects

Choose Z-order when:

  • Very large datasets (>100K objects)
  • Parallel query processing is required
  • Simple range queries dominate
  • Memory bandwidth is a concern
  • Working with point data or small objects

Choose Hybrid when:

  • Data characteristics vary across regions
  • Query patterns are diverse
  • Maximum performance is required
  • Development resources allow for complexity

7. Implementation Recommendations

Production Considerations

// Template for production spatial index selection
template<typename ObjectType>
class ProductionSpatialIndex {
private:
std::unique_ptr<SpatialIndexInterface<ObjectType>> index;
DataAnalyzer analyzer;
PerformanceMonitor monitor;
public:
void auto_configure(const std::vector<ObjectType>& sample_data) {
auto characteristics = analyzer.analyze(sample_data);
auto index_type = IndexSelector::select_optimal(characteristics);
index = IndexFactory::create<ObjectType>(index_type, characteristics);
// Configure performance monitoring
monitor.track_index_performance(index.get());
}
void adaptive_optimization() {
auto current_performance = monitor.get_performance_metrics();
if (should_restructure(current_performance)) {
auto new_characteristics = analyzer.analyze_current_data();
auto optimal_type = IndexSelector::select_optimal(new_characteristics);
if (optimal_type != current_index_type()) {
migrate_index(optimal_type);
}
}
}
};

Performance Tuning Parameters

Parameter QuadTree R-tree Z-order Description
Node Capacity 8-16 4-8 N/A Objects per leaf node
Max Depth 12-16 Adaptive N/A Maximum tree depth
Split Strategy Center R* N/A Node splitting method
Bulk Loading Yes Yes Yes Optimize for batch inserts
Memory Pool Optional Recommended Essential Pre-allocate memory

Conclusion

The choice of spatial index significantly impacts EDA tool performance. This analysis provides evidence-based guidance:

  1. For typical EDA workflows with mixed rectangular components: R-tree
  2. For interactive applications requiring predictable performance: QuadTree
  3. For massive datasets (>100K components): Z-order curve
  4. For maximum performance with development resources: Hybrid approach

The key is matching data characteristics and query patterns to index strengths while considering implementation complexity and maintenance requirements.