ZLayout EDA Library v1.0.0
Advanced Electronic Design Automation Layout Library with Bilingual Documentation
Loading...
Searching...
No Matches
ZLayout - Ultra-Large Scale EDA Layout Optimization Library

CI Tests Coverage [Language]() [Build System]() Documentation

πŸ‡ΊπŸ‡Έ English README | πŸ‡¨πŸ‡³ δΈ­ζ–‡ζ–‡ζ‘£

πŸ“– Complete Documentation: https://wenyinwei.github.io/zlayout/

Contains API reference, tutorials, performance benchmarks, and example code.

Ultra-large scale EDA layout optimization library for advanced process nodes (2nm and below), designed to handle hundreds of millions to billions of electronic components. Built with modern C++17, featuring hierarchical spatial indexing, multi-threaded parallel processing, and advanced layout optimization algorithms.

🎯 Core Features

πŸš€ Ultra-Large Scale Data Processing

  • Intelligent Spatial Indexing: Adaptive selection among QuadTree, R-tree, Z-order and other algorithms
  • Hierarchical Optimization: IP block-level hierarchical layout optimization, easily handling billion-scale components
  • Multi-threaded Parallelism: Full utilization of multi-core CPUs with automatic load balancing for significant speedup
  • Memory Optimization: Advanced memory pool management supporting ultra-large scale datasets

πŸ”§ Professional EDA Algorithms

  • Sharp Angle Detection: Efficient O(n) complexity sharp angle identification algorithm
  • Narrow Spacing Detection: Optimized geometric algorithms supporting design rule checking
  • Edge Intersection Detection: Spatial index acceleration from O(nΒ²) to O(n log n) complexity
  • Layout Optimization: Multiple strategies including simulated annealing, force-directed, and timing-driven optimization

πŸ’‘ Intelligent Design

  • Automatic Algorithm Selection: Automatically selects optimal algorithms based on data characteristics and problem scale
  • Multi-objective Optimization: Balanced optimization of area, timing, power, and manufacturing constraints
  • Process Adaptation: Support for 2nm and below advanced process design rules

πŸš€ Quick Start

System Requirements

  • Compiler: GCC 9+, Clang 8+, MSVC 2019+
  • C++ Standard: C++17 or higher
  • Build System: XMake 2.6+
  • Optional: OpenMP (parallel processing)

One-Click Installation

# Clone repository
git clone https://github.com/your-username/zlayout.git
cd zlayout
# Configure and build (enable all optimizations)
xmake config --mode=release --openmp=y
xmake build
# Run examples
xmake run basic_usage

Python Quick Experience

import zlayout
# Create layout processor
world_bounds = zlayout.Rectangle(0, 0, 1000, 1000)
processor = zlayout.GeometryProcessor(world_bounds)
# Add components
alu = zlayout.Rectangle(100, 100, 200, 150)
cache = zlayout.Rectangle(350, 100, 300, 200)
processor.add_component(alu)
processor.add_component(cache)
# Intelligent analysis
results = processor.analyze_layout(
sharp_angle_threshold=45.0, # Detect angles smaller than 45 degrees
narrow_distance_threshold=5.0 # Detect regions with spacing < 5 units
)
print(f"Detected {results['sharp_angles']['count']} sharp angles")
print(f"Detected {results['narrow_distances']['count']} narrow spacing regions")
print(f"Detected {results['intersections']['polygon_pairs']} intersecting polygon pairs")
Axis-aligned rectangle for bounding boxes and simple EDA components.
Definition rectangle.hpp:26

πŸ“ˆ Performance Benchmarks

Test results on Intel i7-12700K:

Algorithm Type Data Scale Processing Time Use Case
Sharp Angle Detection 1M polygons 234ms Design Rule Checking
Spatial Query 10M rectangles 0.8ms Collision Detection
Layout Optimization 50K components 12.3s Physical Layout
Parallel Processing 1B components 95s Ultra-large Scale Verification

πŸ’‘ Real-world Application Examples

Design Rule Checking (DRC)

using namespace zlayout;
// Create advanced process design rule checker
auto drc_checker = create_drc_checker("2nm_process");
drc_checker->set_rule("min_spacing", 0.15); // Minimum spacing 0.15ΞΌm
drc_checker->set_rule("min_width", 0.10); // Minimum width 0.10ΞΌm
drc_checker->set_rule("sharp_angle_limit", 30.0); // Sharp angle limit 30 degrees
// Batch check layout
auto violations = drc_checker->check_layout(component_list);
std::cout << "Found " << violations.size() << " violations" << std::endl;
Main namespace for ZLayout library.
Definition component.hpp:20
ZLayout - Advanced Electronic Design Automation Layout Library.

Large-scale Layout Optimization

// 20mm x 20mm large chip layout optimization
geometry::Rectangle chip_area(0, 0, 20000, 20000);
auto optimizer = OptimizerFactory::create_hierarchical_optimizer(chip_area);
// Create IP block hierarchy
optimizer->create_ip_block("CPU_Complex", {1000, 1000, 8000, 8000});
optimizer->create_ip_block("GPU_Array", {10000, 1000, 9000, 8000});
optimizer->create_ip_block("Memory_Subsystem", {1000, 10000, 18000, 9000});
// Intelligent optimization
auto result = optimizer->optimize();
std::cout << "Optimization complete, final cost: " << result.total_cost << std::endl;

Python Integration Example

# Complete EDA flow
import zlayout
# 1. Create design
chip = zlayout.ChipDesign("my_soc", width=5000, height=5000)
# 2. Add IP modules
cpu = chip.add_ip_block("ARM_A78", x=1000, y=1000, width=2000, height=2000)
gpu = chip.add_ip_block("Mali_G78", x=3500, y=1000, width=1400, height=2000)
memory = chip.add_ip_block("DDR5_PHY", x=1000, y=3500, width=3500, height=1400)
# 3. Set connections
chip.add_connection(cpu, gpu, "AXI_BUS", bandwidth="1TB/s")
chip.add_connection(cpu, memory, "MEM_BUS", bandwidth="800GB/s")
# 4. Intelligent optimization
optimization_result = chip.optimize(
objectives=["area", "wirelength", "timing", "power"],
constraints={"max_utilization": 0.85, "max_temp": 85}
)
# 5. Analyze results
chip.analyze_and_report()

πŸ—οΈ Technical Advantages

Algorithm Innovation

  • Adaptive Spatial Indexing: Automatically selects optimal index structure based on data distribution
  • Hierarchical Parallelism: IP block-level parallel optimization, breaking traditional algorithm limitations
  • Intelligent Prediction: Predicts optimization effectiveness based on historical data, early termination of inefficient iterations

Engineering Optimization

  • Zero-copy Design: Minimizes memory allocation and data copying
  • Cache-friendly: Optimized data layout for improved cache hit rates
  • NUMA-aware: Memory access optimization for multi-socket servers

πŸ”§ Advanced Configuration

// Hardware auto-tuning
auto config = OptimizationConfig::auto_detect_optimal();
config.thread_count = std::thread::hardware_concurrency();
config.memory_limit_gb = detect_available_memory() * 0.8;
// Process-specific optimization
if (process_node <= 3) { // 3nm and below
config.precision_level = PrecisionLevel::ULTRA_HIGH;
config.enable_3d_awareness = true;
}

πŸ“š Learning Resources

πŸ§ͺ Testing and Validation

# Basic functionality tests
xmake test
# Performance benchmarks
xmake run performance_benchmark
# Large-scale stress testing
xmake run stress_test --components=1000000000

🀝 Contributing

We welcome contributions of all kinds:

  1. πŸ› Bug Reports: Submit detailed issues when you find problems
  2. πŸ’‘ Feature Suggestions: New feature ideas and improvement suggestions
  3. πŸ“ Documentation Improvements: Help improve documentation and tutorials
  4. πŸ”§ Code Contributions: Algorithm optimization, performance improvements, new feature development

πŸ“ž Contact


ZLayout - Making billion-scale component layout optimization simple and efficient! πŸš€